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Conclusions derived from the solution of premixed laminar flames in a stagnation point 
flow are important in the study of pollutant formation, the determination of chemically con- 
trolled extinction limits and in the ability to characterize the combustion processes occurring 
in turbulent flames. In the neighborhood of the stagnation point produced in these flames, a 
chemically reacting boundary layer is established. For a given equivalence ratio, the input 
flow velocity can be varied and solutions can be determined for increasing values of the strain 
rate. As the strain rate increases, the flame nears extinction. In the vicinity of the extinction 
point, however, the Jacobian of the system becomes singular. To avoid computational dif- 
ficulties, we employ numerical bifurcation techniques to generate the approriate steady-state 
profiles (both physical and nonphysical). The method is applied to study the extinction 
behavior of a one-step kinetics model of a premixed hydrogen-air and methane-air flame in a 
countertlow geometry. 63 1987 Academic Press, Inc. 

1. INTRODUCTION 

Conclusions derived from the solution of premixed laminar flames in a stagnation 
point flow are important in the determination of chemically controlled extinction 
limits, in the ability to characterize the combustion processes occurring in turbulent 
flames and in the study of pollutant formation. Experimentally these flames can be 
produced by a single reactant stream impinging on an adiabatic wall or by two 
counterllowing reactant streams emerging from two coaxial jets. In the 
neighborhood of the stagnation point produced by these flows, a chemically 
reacting boundary layer is established. Along the stagnation point streamline the 
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governing equations can be reduced to a system of coupled nonlinear two-point 
boundary value problems. In the single reactant stream configuration only one 
reaction zone is produced. If the exit velocity and the equivalence ratio of the 
fuel-air mixture of each jet are equal, then in the two reactant stream problem a 
double flame is produced with a plane of symmetry through the stagnation point 
and parallel to the two jets (see Fig. 1). 

A number of studies of premixed flames in a stagnation point flow have appeared 
recently in the literature [ lI13]. The work has focused on experimental 
[l-3, 8, 131, analytical [4, 5, 9, 121, and numerical investigations [6, 7, l&12]. In 
several of these studies a single reactant jet was utilized [l, 2, 4-7, 10, 12, 131 while 
in others two counterflowing reactant streams were employed [ 1, 3, 8,9, 111. In a 
number of cases it was found that the Lewis number played an important role in 
the behavior of these flames near extinction. Computationally, for a given 
equivalence ratio, the input flow velocity can be varied and one can obtain a 
relationship between the strain rate (the velocity gradient) and the peak tem- 
perature. In general, as the input flow velocity is increased and the flame nears 
extinction, the peak temperature decreases. It is in the neighborhood of the 
extinction point, however, that computation of the solution often becomes difficult. 
In particular, at the extinction point one can show that the Jacobian of the system 
is singular. If solutions are desired in this region, the computational procedure must 
be modified to account for the singular behavior of the system. 

Procedures enabling the calculation of bifurcation and limit points for systems of 
nonlinear equations have been discussed, for example, by Keller [14], Jepson and 
Spence [ 151, Chan [16], Seydel [17], and Heinemann, Overholser, and Reddien 
[ 18, 191. In particular, in the work of Heinemann et al. a version of Keller’s arc- 
length continuation method was used to calculate the multiple steady states of a 
model one-step, nonadiabatic, premixed laminar flame [18] and a premixed, non- 
adiabatic, hydrogen-air system [19]. In the hydrogen-air problem the cold boun- 
dary temperature was taken as the bifurcation parameter and S-shaped response 
curves with both an ignition and an extinction point were obtained. 

In this paper we focus our attention on doubly premixed laminar flames 
produced by two counterflowing coaxial jets. By applying appropriate boundary 
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FIG. 1. Schematic of the stagnation point flow configuration. 
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conditions at the plane of symmetry, the model we consider is, in principle, 
equivalent to that of a single reactant stream impinging on an adiabatic wall with 
slip. Our goal is to generalize the ideas used in [ 18, 191 so that extinction limits of 
premixed laminar flames in a stagnation point flow can be calculated. In particular, 
we solve the governing conservation equations of mass, momentum, species, and 
energy by an adaptive finite difference procedure. In our model the strain rate (or 
more precisely the inverse of the strain rate) is the natural bifurcation parameter. 
However, as the strain rate is increased and the flame nears extinction, the Jacobian 
of our system becomes singular. We overcome this difficulty by applying a 
modification of the arc-length continuation procedure used in [ 18, 191. Specifically, 
by introducing the bifurcation parameter as an eigenvalue at each grid point and by 
modifying the pseudo-arclength boundary condition, we can maintain the block 
tridiagonal structure of the Jacobian matrix. In this way we do not have to modify 
our linear equation solver as would be the case if the approach used in [ 18, 191 
were employed. To simplify the computations, we assume all the Lewis numbers are 
equal to one and we employ a global one-step kinetics model. We investigate the 
extinction properties of both premixed hydrogen-air and methane-air flames. We 
observe C-shaped extinction curves similar to the ones obtained by Smith et al. 
[lo] and Giovangigli and Candel [12]. We realize, of course, that a one-step 
procedure cannot predict adequately the effects of nonunit Lewis numbers of the 
deficient reactants on extinction. Nevertheless, the approach we take illustrates the 
effectiveness of the numerical bifurcation procedure in calculating the multiple 
steady states of these particular flames. Ultimately, we will apply the methods used 
in this paper to study the effects of finite rate kinetics on the extinction of premixed 
hydrogenair and methaneeair flames in a counterflow geometry. 

The organization of the paper is such that in the next section we present the 
governing conservation equations and in Section 3 we formulate the one-step 
model. In Section 4 we outline the boundary value solution method and in Section 
5 we discuss the modified arclength continuation procedure. Numerical results are 
presented in Section 6. 

2. PROBLEM FORMULATION 

Our model for counterflowing premixed flames assumes the flow to be laminar, 
stagnation point flow. Hence, the governing boundary layer equations for mass, 
momentum, chemical species, and energy can be written in the form 

Wux”) + GM = o 

ax ay ' 
au au ap a au 

Pu;jr;+Pu&+&=-jj P-&J 9 
( > 

(2-l) 

(2.2) 
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k = 1, 2 ,..., K, (2.3) 

GJ, W, h, = 0, (2.4) 

where a represents a geometric factor (c1= 0 for Cartesian coordinates and c( = 1 for 
cylindrical coordinates). For the remainder of this paper we set CI = 0. The system is 
closed with the ideal gas law, 

p =pw/RT. (2.5) 

In these equations x and y denote independent spatial coordinates; T, the tem- 
perature; Y,, the mass fraction of the kth species; p, the pressure; u and u the 
tangential and the transverse components of the velocity, respectively; p, the mass 
density; wk, the molecular weight of the kth species; p, the mean molecular weight 
of the mixture; R, the universal gas constant; A, the thermal conductivity of the 
mixture; c,, the constant pressure heat capacity of the mixture; cpk, the constant 
pressure heat capacity of the kth species; +,, the molar rate of production of the 
kth species per unit volume; hk, the specific enthalpy of the kth species; p the 
viscosity of the mixture and Vky is the diffusion velocity of the kth species in the y 
direction. The free stream (tangential) velocity at the edge of the boundary layer is 
given by u, = ax where a is the strain rate. 

We introduce the notation 

f’ = u/u,, 
v= pv, 

(2.6) 

(2.7) 

wheref’ is related to the derivative of a modified stream function (see, e.g., Dixon- 
Lewis et al. [20]). Using these expressions, the boundary layer equations can be 
transformed into a system of ordinary differential equations valid along the 
stagnation-point streamline x = 0. For a system in rectangular coordinates, we have 

(2.8) 

$ pz - v~+a(p,-p(f’)2)=09 ( > 
--$pY&v&)-v~+~&w,=0, k = 1, 2 ,..., K, (2.10) 

-c,y~T- f pY,v&,dT- 
K 

dy dy 
c G, W,h,=O. (2.11) 

k=l k=l 
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At the plane of symmetry (y = 0) the boundary conditions are given by 

v=o, (2.12) 

df ‘ldy = 0, (2.13) 

dY,Jdy = 0, k = 1, 2 ,.,., K, (2.14) 

dT/dy = 0, (2.15) 

andasy-+oo by 
f'= 1, (2.16) 

y, = Yke, k = 1, 2 ,..., K, (2.17) 

T= T,. (2.18) 

The mass fractions Y,., k= 1,2,..., K and the temperature T, at the edge of the 
boundary layer are specified quantities. 

3. ONE-STEP MODEL 

Most complex combustion systems ordinarily involve large numbers of chemical 
species. These species are related through a detailed kinetics mechanism involving 
many elementary chemical reactions. Solution of the governing equations in such 
systems reduces to the solution of an ordinary or partial differential equation for 
each species mass fraction. In some applications the determination of the 
appropriate chemical reactions and their respective rate constants can be a difficult 
task. It can be made simpler, however, by postulating a single global reaction for 
the system. This can also be useful when the size of the system to be solved (for the 
computer being used) results in a computationally infeasible problem. We realize, of 
course, that a global reaction mechanism does not provide detailed information on 
the system’s minor species-information that is often needed in assessing the detailed 
structure of a reacting system (see, e.g., [21, 22)). 

Determination of overall, global, reaction rates for flames has been investigated, 
for example, by Levy and Weinberg [23,24], Westbrook and Dryer [25] and Cof- 
fee, Kotlar, and Miller [26]. In the paper by Coffee et al., the equations governing 
freely propagating, premixed, laminar flames with detailed kinetics and complex 
transport were solved for the temperature and the species mass fractions. From the 
calculated temperature, a heat release profile was obtained as a function of the 
independent spatial coordinate. The reaction rate parameters could then be 
obtained by a two-parameter least squares lit to this data. In this paper we utilize 
these calculated reaction rate parameters in the numerical solution of one-step, 
premixed, laminar hydrogen-air and methane-air flames in a counterflow geometry. 

We assume the fuel and the oxidizer obey a single overall irreversible reaction of 
the type 

Fuel (F) + Oxidizer (0) -+ Products (P), (3.1) 
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in the presence of an inert gas (N). We have 

v,F+ v,O + v,P, (3.2) 

where vF, vO, and vp are the stoichiometric coefficients of the fuel, the oxidizer and 
the product, respectively. In addition, in the one-step model we consider, we neglect 
thermal diffusion and we assume that the ordinary mass diffusion velocities can be 
written in terms of Fick’s law, i.e., 

D, dY, v,= ---, 
Y, dy 

k = 1, 2 ,..., K, (3.3) 

where D, is the diffusion coefficient of the kth species into the mixture. We also 
take the quantities cp = cp,, p A, p2D,, and pp to be constant. 

If, for purposes of the discussion that follows, we introduce the Lewis number of 
each species 

Le,=n 
P&C, 

Le,=n, 
PDOC, 

Le,=n, 
PD,c, 

Le,=A 
~Divcp' 

and the Prandtl number 

Pr = pc,/A, 

then the governing equations in (2.8-2.11) become 

( W,v,h,+ W,v,h, - W,v,h,) ,.+ = o 

(3.4a) 

(3.4b) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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where 
. . 

wF wo WP w= --= --=- (3.13) 
vF vo VP 

is the rate of progress of the reaction and where we have made use of the fact that 
C:= 1 Y, V, = 0. From Eq. (3.11) we see that the inert gas profile Y, = Y, = 
constant. 

If we now assume that the Lewis numbers and the Prandtl number are equal to 
one and if we introduce the heat release per unit mass of the fuel Q, where 

Q=h,+zh,-Eh,, 
F ‘fi 

(3.14) 

we can derive the following Shvab-Zeldovich relations 

yo = YO? - Q WFVF c2!&Z (T- T,), 

YP = y, + Q WFV, 
cpw,v, (T- T,), 

(3.16) 

(3.17) 

With the rate of progress given by an Arrhenius type relation, the heat release per 
unit volume can be written in the form 

q = Q W,v, G = Q(p YF)yfi(p Yo)“O A exp( - E/RT), (3.18) 

and the one-step model reduces to the solution of 

(3.20) 

(3.21) 

with the boundary conditions at y=O given by 

v=o, (3.22) 

(3.23) 

dT 
-&‘O’ (3.24) 
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f’= 1, (3.25) 

T= T,. (3.26) 

We observe that, as a result of (3.15)-(3.18) and the ideal gas law, the expression 
for q in (3.21) is strictly a function of the temperature and, in addition to the 
stoichiometry of the global reaction, it depends upon the heat release per unit mass 
of the fuel, the edge temperature and mass fractions, and the two Arrhenius 
parameters. We also point out that, as the strain rate approaches zero, the flame 
will shift further and further from the plane of symmetry so that (up to an arbitrary 
translation) it eventually approaches a freely propagating premixed laminar flame. 
As a result, in the calculations reported in Section 6, we use the values of the heat 
release Q and the two Arrhenius constants A and E that were obtained by Coffee et 
al. [26] from a set of detailed chemistry calculations of freely propagating premixed 
laminar flames. In their investigation the adiabatic flame temperature of a detailed 
chemistry model was used to determine the value of the heat release per unit mass. 
The p; -ameters A and E were then determined by a least squares fit such that 

A exp(-E/RT*)xq*lQ(p(T*) Y,(T*))WT*) Yo(T*))‘o, (3.27) 

T*, q*) are the temperatures and heat releases from the detailed chemistry where 
model. 

4. METHOD OF SOLUTION 

Solution of Eqs. (3.19 )-( 3.26) proceeds by an adaptive nonlinear boundary value 
method. The solution procedure has been discussed in detail elsewhere [27] and we 
outline only the essential features here. Our goal is to obtain a discrete solution of 
the governing equations on the mesh .M 

A= {O=y,<y,< ... <y,=L}, (4.1) 

where hj = yj- yj- r, j= 1, 2,..., m, and where the value of L is taken large enough 
so that the zero flux boundary conditions are satisfied to an acceptable level of 
accuracy. We approximate spatial derivatives with finite difference expressions. 
Specifically, we write 

f(a(Y)5),-(,,,1,~,) (aj+1,*agj+1-aj~1,2agj), (4.2) 
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where we define gj=g(yj),j= 0, l,..., m, and 

j=b, l,..., m- 1, 

) j=O, l,..., m- 1. 

(4.3) 

(4.4) 

First derivatives are differenced using upwind difference expressions. 

Newton’s Method 

With the continuous differential operators replaced by expressions similar to 
those in (4.2)-(4.4), we convert the problem of finding an analytic solution of the 
governing equations to one of finding an approximation to this solution at each 
point of the mesh A. We seek the solution U,* of the nonlinear system of difference 
equations 

F(Uv,*)=O. (4.5) 

For an initial solution estimate @’ that is sufficiently “close” to U,*, the system of 
equations in (4.5) can be solved by Newton’s method. We write 

J(Uk)(Uk” - Uk)= -l,F(U’), k = 0, l,..., (4.6) 

where Uk denotes the kth solution iterate, & the kth damping parameter (0 < 2 d 1) 
[28] and J(Uk) = aF(Uk)/lJU the Jacobian matrix. A system of linear block 
tridiagonal equations must be solved at each iteration for corrections to the 
previous solution vector. For many problems the cost of forming (either 
analytically or numerically) and factoring the Jacobian matrix can be a significant 
part of the cost of the total calculation. In such problems we apply a modified New- 
ton method in which the Jacobian is re-evaluated only periodically [29]. 

Adaptive Gridding 

Solution of boundary value problems by finite difference methods requires that a 
mesh be determined a priori. Many of the methods that have been used to deter- 
mine adaptive grids for two-point boundary value problems can be interpreted in 
terms of equidistributing a positive weight function over a given interval [30, 311. 
We say that a mesh d is equidistributed on the interval [0, L] with respect to the 
non-negative function W and the constant C if 

I “+I Wdy= C, j=O, l,..., m- 1. 
Yl 

(4.7) 

The major differences in the various approaches center around the choice of the 
weight function and whether or not the mesh is coupled with the calculation of the 
dependent solution components (see, e.g., [32, 331). We determine the mesh (see 
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[27]) by employing a weight function that equidistributes the difference in the 
components of the discrete solution and its gradient between adjacent mesh 
points. Upon denoting the vector of N dependent solution components by 
8= [O,, 8, )...) i7JT, we seek a mesh J%! such that 

11:“’ I$1 dy<6 ~o~mL G,-o.“,‘:,. 2;,1 ,j=O, l,..., m- 1, i= 1,2 ,..., N, (4.8) 

and 

where 6 and y are small numbers less than one and the maximum and minimum 
values of ni and da,/dy are obtained from a converged numerical solution on a 
previously determined mesh. 

A potential problem of such an equidistribution procedure is the formation of a 
mesh that may not be smoothly varying. For example, the ratio of consecutive 
mesh intervals may differ by several orders of magnitude. This can affect the 
accuracy of the method as well as the convergence properties of the Newton 
iteration. As a result, we impose the added constraint that the mesh produced by 
employing (4.8) and (4.9) be locally bounded, i.e., the ratio of adjacent mesh inter- 
vals must be bounded above and below by constants. We require 

1 h 
-<L<A, 
A h, I 

j = 2, 3 ,..., m, (4.10) 

where A is a constant >/ 1. This smooths out rapid changes in the size of the mesh 
intervals. 

In employing the adaptive mesh algorithm, we first solve the boundary value 
problem on a coarse mesh and obtain the maximum and minimum values of fii and 
dt?,/dy. The inequalities in (4.8k(4.10) are then tested and if any of them is not 
satisfied, a grid point is inserted at the midpoint of the interval in question. Once a 
new mesh has been obtained, the previously converged numerical solution is inter- 
polated onto the new mesh. The problem is solved on the new mesh and the process 
continues until (4.8)(4.10) are satisfied. 

5. ARCLENGTH CONTINUATION 

We observe that the system of equations in (4.5) can be written in the form 

F(U, l/a)=O, (5.1) 

where specific reference to the parametric dependence on the inverse of the strain 
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rate has been made. (The inverse of the strain rate is used, as opposed to the strain 
rate itself, due to its relationship to the Damkohler number [9]). As the value of a 
increases and the flame nears extinction, the maximum value of the temperature 
decreases. It is near the extinction limit, however, that the numerical calculations 
become increasingly diflicult. In particular, at the extinction point the Jacobian of 
the system is singular. To alleviate the computational difficulties, a modified form of 
the governing equations is solved [14]. We introduce the reciprocal of the strain 
rate as a new dependent variable. The vector of dependent variables (U, l/~)~ can 
now be considered functions of a new independent parameter S. If we define 

Z(s) = (U(s), Ms)K 

then the new problem we want to solve is given by 

G(Z, s) = 0, 

(5.2) 

(5.3) 

where 

G(Z, s) = (5.4) 

and where N is an arbitrary normalization. As is often the case, (see, e.g., [ 143) the 
normalization is chosen such that s approximates the arclength of the solution 
branch in the space ( 11 UII, l/u) ( see Fig. 2). As an example, if (U(s,), l/u(~~))~ is a 
known solution, then two commonly used normalizations are 

(5.5) 

and 

N,=~~l~(r)-U(s,)l12+(~-0)(~-~~-(s-s,)'=0, (5.6) 

where 6 E (0, 1). 

I/a 
FIG. 2. Bifurcation diagram illustrating a simple turning point (A). 
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The Jacobian of the new system can be written in the form 

[ 
FIA U(s), lb(s)) 

‘Y(zy s, = Gz(Zy s, = N,( U(s), l/a(s), s) 
Fl,,( U(s), 1/4s)) 

N,,,( U(s), l/a(s), s) 1 ’ (5.7) 

where f’,, F1,,, N,, and N,,, denote the appropriate partial derivatives. It can be 
shown that at a simple turning point, even though F, is singular $ is not. In 
addition, given a solution Z(s) we can determine a new predicted value for 
Z(s + 6s) by forming 

Z(s + 6s) = Z(s) + 2 6s, (5.8) 

where dZ/ds is determined from 

(5.9) 

Several points are worth discussing in more detail. As a result of the differencing 
used in (4.2)-(4.4), the Jacobian of the system in (4.5) is block tridiagonal. 
However, if after introduction of the reciprocal of the strain rate as a dependent 
variable along with the extra normalization condition, the quantities F,,, and N, 
are not of the proper form, the block tridiagonal structure of the Jacobian will be 
destroyed. For the normalizations considered in (5.5) and (5.6) this is ordinarily the 
case. Although solution of the system of linear equations corresponding to (5.3) can 
proceed by methods discussed in [16], we would like to keep the basic block 
tridiagonal structure of the Jacobian. In this way we can utilize the solution method 
used in solving adiabatic, premixed, laminar flames [34], burner-stabilized, 
premixed, laminar flames [27], counterflow, laminar, diffusion flames [35], and 
the extinction problems we consider here. 

The procedure we follow is similar to that used in the solution of one-dimen- 
sional, adiabatic, premixed, laminar flames [34]. For each value of the parameter s, 
we want to obtain the corresponding value of the strain rate and the remaining 
dependent solution components. We point out that for each value of the pseudo- 
arclength the strain rate is constant. Hence, it satisfies the trivial differential 
equation 

d 1 
&a 0 

= 0. (5.10) 

We can maintain the block tridiagonal structure of the Jacobian in (5.7) if we 
introduce the reciprocal of the strain rate as a dependent variable at m of the m + 1 
grid points and if we specify a normalization condition at the remaining grid point 
that does not introduce nonzero Jacobian entries outside of the three block 
diagonals. The success of this procedure depends upon the choice of the nor- 
malization condition. 
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In premixed flame extinction studies (see, e.g., [3, 73) the maximum temperature 
is used often as the ordinate in bifurcation curves. The maximum temperature is 
both a measurable quantity and one of practical interest. In the counterflowing 
premixed flames we consider here, the maximum temperature is attained at the 
symmetry plane y = 0. Hence, it is natural to introduce the temperature at the first 
grid point along with the reciprocal of the strain rate as the dependent variables in 
the normalization condition. We do not include the remaining dependent variables. 
In this way the block tridiagonal structure of the Jacobian can be maintained. 

The final form of the governing equations we solve is given by 

E + apf’ = 0, 
4 

d 1 
&a 0 

= 0, 

(5.12) 

(5.13) 

(5.14) 

with the boundary conditions at y = 0 given by 

v=o, (5.15) 

df' -&= 0, (5.16) 

(5.17) 

f++T(O,s)- T(o,~,))+~(~(o,~,))(~(O,sj-~(O,s,))-(s-s,)=O, (5.18) 

andasy-+oo by 

f'=l, (5.19) 

T= T,. (5.20) 

6. NUMERICAL RESULTS 

In this section we apply the one-step kinetics model and the modified arclength 
continuation procedure to determine the extinction limits as a function of the strain 
rate for counterflowing premixed hydrogen-air and methane-air flames. In all cases 
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values for the specific heats, the heat releases, the thermal conductivities, the pre- 
exponential constants and the activation energies used in (5.11 k(5.20) are taken 
from Coffee et al. [26]. For problems in which intermediate values are required, 
we apply a piecewise linear interpolation procedure to obtain the appropriate 
parameter values. 

It is worthwhile to point out that several other procedures for calculating 
extinction points of premixed laminar flames in a stagnation point flow have 
appeared recently in the literature [6,7, lo]. In the work of Sato and Tsuji [6,7] 
an energy and a species conservation equation were solved with a Runge-Kutta 
shooting procedure. For a specified value of the temperature at the wall, response 
curves were obtained for the flame temperature versus the first Damkohler number 
(0,). The computational procedure involved adjusting D, and the mass fraction of 
the reactant on the wall so that the downstream boundary conditions were satisfied. 
In their study the Lewis number could be varied. In the work by Smith et al. [lo] 
the full set of conservation equations with unit Lewis numbers were solved by a 
combination of shooting and quasilinearization. Extinction points and multiple 
solutions were found when a thin flame model and trial-and-error solution 
approximations were used as initial solution estimates. Our approach differs from 
that of Sato and Tsuji [6, 73 in that, like Smith et af. [lo], we solve the coupled 
mass, momentum, species, and energy conservation equations. We employ an adap- 
tive finite difference method. However, unlike the procedure used by Smith et al., 
we are able to trace out automatically all of the physical and unphysical solutions 
with the pseudo-arclength continuation procedure starting from a single solution. 

Methane-Air Flames 

We performed a sequence of calculations for both lean and rich methane-air 
flames. For each methane-air mixture the modified arclength continuation 
procedure was implemented to obtain profiles of the maximum temperature versus 
the inverse of the strain rate. The adaptive boundary value solution method (see 
Sect. 4) was used first to obtain a solution for a methane-air mixture consisting of 
6.5% methane (mole fraction) with an initial strain rate of a = 500~s’. The Euler 
continuation procedure discussed in (5.8)-(5.9) was used then to help obtain 
solutions (both physical and unphysical) as the parameter s (and hence the strain 
rate) changed. The computations were performed on a domain of one cm. 

For each strain rate calculation 60-80 adaptively chosen grid points were used. 
However, as the strain rate adjusted, the location of the flame front shifted as well. 
To prevent the adaptive gridding procedure from using all of the grid points of a 
previous strain rate calculation, we implemented a “skeleton” grid procedure 
similar to the one used in [36] to restrict the growth in the number of mesh points. 
Typically, one half of the mesh points from a previous stain rate calculation was 
used initially in each new strain rate calculation. 

Once the 6.5% calculation was completed, we repeated the procedure for 
methane-air mixtures containing 6.85, 7.5, 8.5, 9.5 (stoichiometric), 10.5, 11.5, 12.5, 
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l/a IN SEC 

FIG. 3. C-shaped extinction curves for lean (6.5, 6.85, 7.5, 8.5%) and stoichiometric (9.5%) 
methane-air flames. 

12.85, and 13.5% methane (mole fraction). In each case we obtained C-shaped 
extinction curves. The corresponding curves are plotted in Figs. 3 and 4. As the 
figures illustrate, as we move along the upper branch in the direction of increasing 
strain rate, the peak temperature decreases. Ultimately, as the value of 
dT,,,/d(l/a) + 00, the flame extinguishes. We can, however, continue past the 
extinction point with the arclength procedure. We find that, as the strain rate 
begins to decrease, the peak temperature continues to fall. Temperature profiles 
(both physical and unphysical) for an 11.5% methane (mole fraction) flame are 
illustrated in Figs. 5 and 6. If we decrease the strain rate even further, we will con- 
tinue to move along the unphysical branch towards another turning point-an 
ignition point. After the ignition point is passed, we will move on to the 
extinguished solution branch. We have not included the ignition points since, from 
a practical point of view, they occur at strain rates so low that stabilization of such 
flames in the laboratory is exceedingly difficult (see also Smith et al. [lo]). 

l/a IN SEC 

FIG. 4. C-shaped extinction curves for rich (10.5, 11.5, 12.5, 12.85, 13.5%) methane-air flames. 
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FIG. 5. Temperature profiles (physical) for an 11.5% methane-air flame. Profiles for strain rates of 
500, 1000, and 4200~ are illustrated. 

If we collect the results of the ten methane-air flame calculations, we can plot the 
value of the strain rate and the velocity at extinction (at x = 1 cm.) versus the 
equivalence ratio. These results (the lack of smoothness in the curves is due to the 
number of calculations plotted) are contained in Figs. 7 and 8, respectively. We 
observe that the peak values of the strain rate and the corresponding extinction 
velocity occurred for slightly rich conditions-the flame with the highest calculated 
temperature. In addition, if we define the extinction distance as the distance from 
the plane of symmetry to the point at which the temperature is equal to 50% of its 
maximum temperature, we can obtain a plot of extinction distance versus 
equivalence ratio similar to the plots in Figs. 7 and 8. These results are shown in 
Fig. 9. It is worthwhile to point out that the results shown in Fig. 9 differ 
qualitatively from those reported by Sato [3] for lean methane-air mixtures. This 
is due primarily to the fact that we have assumed the Lewis numbers are equal to 
one. 

0.0 0.1 02 1 

Y IN CM 

1 

FIG. 6. Temperature profiles (unphysical) for an 11.5% methane-air flame. Profiles for strain rates of 
500, 2000, and 4200 SK’ are illustrated. 
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FIG. 7. Illustration of the strain rate (in SK’) at extinction versus the methane-air equivalence ratio. 

0 
0 1 2 

EQUIVALENCE RATIO 

FIG. 8. Illustration of the velocity (in cm/s) at extinction versus the methane-air equivalence ratio. 

0 1 

EQUIVALENCE RATIO 

FIG. 9. Illustration of the distance (in cm) at extinction versus the methane-air equivalence ratio. 
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FIG. 10. C-shaped extinction curves for lean (15.0, 16.0, 17.0%) hydrogen-air flames 

Hydrogen-Air Flames 

In the second test problem we considered, the solution procedure discussed in 
Sections 4 and 5 was applied to a set of premixed hydrogen-air flames. As in the 
methane-air calculations, we began the calculation with the strain rate equal to 
500s’. Again the Euler continuation procedure was used to help obtain solutions 
as s changed. The calculations were begun with a hydrogen-air mixture consisting 
of 15.0% hydrogen (mole fraction) on a computational domain of one cm. For each 
strain rate calculation we again used between 6&80 adaptively chosen grid points 
and the skeleton gridding procedure discussed in [36] was also used to restrict the 
growth of the unwanted grid points. In Fig. 10 we illustrate C-shaped extinction 
curves for flames consisting of 15, 16, and 17% hydrogen (mole fraction). The 
results are qualitatively similar to the curves illustrated in Figs. 3 and 4. 

7. CONCLUSION 

We have applied an arclength continuation procedure to calculate extinction 
limits for a set of premixed hydrogen-air and methane-air flames in a stagnation 
point flow. Profiles for the peak temperature versus the strain rate were obtained 
for a variety of incoming fuel-air mixtures. To simplify the computations, we con- 
sidered a one-step global kinetics model in which all the Lewis numbers were 
assumed equal to one. We realize of course that such a procedure cannot predict 
adequately all of the detailed behavior resulting from a complex kinetics 
calculation. We have, however, illustrated the applicability of the numerical bifur- 
cation procedure in calculating extinction limits for premixed flames in a stagnation 
point flow. In a subsequent paper we will apply the methods discussed in this study 
to obtain extinction limits of hydrogen-air and methane-air flames in which the 
chemistry is governed by a detailed multistep mechanism. 
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